
pimdb
Release 0.2.3

Thomas Aglassinger

Jun 09, 2023

TABLE OF CONTENTS

1 License 3

2 Installation 5

3 Usage 7
3.1 Downloading datasets . 7
3.2 Transferring datasets into tables . 7
3.3 Querying tables . 7
3.4 Databases other than SQLite . 8
3.5 Building normalized tables . 8
3.6 Querying normalized tables . 8
3.7 Reference . 9

4 Data model 11
4.1 Dataset tables . 11
4.2 Normalized tables . 12

5 Contributing 19
5.1 Project setup . 19
5.2 Testing . 19
5.3 Test run with PostgreSQL . 20
5.4 Documentation . 20
5.5 Coding guidelines . 20

6 Changes 21

7 Indices and tables 23

Index 25

i

ii

pimdb, Release 0.2.3

Pimdb is a python package and command line utility to maintain a local copy of the essential parts of the Internet Movie
Database (IMDb) based in the TSV files available from IMDb datasets.

TABLE OF CONTENTS 1

https://imdb.com
https://imdb.com
https://www.imdb.com/interfaces/

pimdb, Release 0.2.3

2 TABLE OF CONTENTS

CHAPTER

ONE

LICENSE

The IMDb datasets are only available for personal and non-commercial use. For details refer to the previous link.

Pimdb is open source and distributed under the BSD license. The source code is available from https://github.com/
roskakori/pimdb.

3

https://www.imdb.com/interfaces/
https://opensource.org/licenses/BSD-3-Clause
https://github.com/roskakori/pimdb
https://github.com/roskakori/pimdb

pimdb, Release 0.2.3

4 Chapter 1. License

CHAPTER

TWO

INSTALLATION

Pimdb is available from PyPI and can be installed using:

$ pip install pimdb

5

https://pypi.org/project/pimdb/

pimdb, Release 0.2.3

6 Chapter 2. Installation

CHAPTER

THREE

USAGE

3.1 Downloading datasets

To download the current IMDb datsets to the current folder, run:

pimdb download all

(This downloads about 1 GB of data and might take a couple of minutes).

3.2 Transferring datasets into tables

To import them in a local SQLite database pimdb.db located in the current folder, run:

pimdb transfer all

(This will take a while. On a reasonably modern laptop with a local database you can expect about 2 hours).

The resulting database contains one tables for each dataset. The table names are PascalCase variants of the dataset name.
For example, the date from the dataset title.basics are stored in the table TitleBasics. The column names in the
table match the names from the datasets, for example TitleBasics.primaryTitle. A short description of all the
datasets and columns can be found at the download page for the IMDb datasets.

3.3 Querying tables

To query the tables, you can use any database tool that supports SQLite, for example the freely available and platform
independent community edition of DBeaver or the command line shell for SQLite.

For simple queries you can also use pimdb’s built-in query command, for example:

pimdb query "select count(1) from TitleBasics"

The result is shown on the standard output and can be redirected to a file, for example:

pimdb query "select primaryTitle, startYear from TitleBasics limit 10" >some.tsv

You can also store a query in a text file and specify the path:

pimdb query --file some-select.sql >some.tsv

7

https://www.imdb.com/interfaces/
https://dbeaver.io/
https://sqlite.org/cli.html

pimdb, Release 0.2.3

3.4 Databases other than SQLite

--database DATABASE

Optionally you can specify a different database using the --database option with an SQLAlchemy engine config-
uration, which generally uses the template “dialect+driver://username:password@host:port/database”. SQLAlchemy
supports several SQL dialects out of the box, and there are external dialects available for other SQL databases and other
forms of tabular data.

Here’s an example for using a PostgreSQL database:

pimdb transfer --database "postgresql://user:password@localhost:5432/mydatabase" all

3.5 Building normalized tables

The tables so far are almost verbatim copies of the IMDb datasets with the exception that possible duplicate rows
have been removed. This means that NameBasics.nconst and TitleBasics.tconst are unique, which sadly is not
always (but still sometimes) the case for the datasets in the .tsv.gz files.

This data model already allows to perform several kinds of queries quite easily and efficiently.

However, the IMDb datasets do not offer a simple way to query N:M relations. For example, the column NameBasics.
knownForTitles contains a comma separated list of tconsts like “tt2076794,tt0116514,tt0118577,tt0086491”.

To perform such queries efficiently you can build strictly normalized tables derived from the dataset tables by running:

pimdb build

If you did specify a --database for the transfer command before, you have to specify the same value for build in
order to find the source data. These tables generally use snake_case names for both tables and columns, for example
title_allias.is_original.

3.6 Querying normalized tables

N:M relations are stored in tables using the naming template some_to_other, for example
name_to_known_for_title. These relation tables contain only the numeric ID’s to the respective actual data
and a numeric column ordering to remember the sort order of the comma separated list in the IMDb dataset column.

For example, here is an SQL query to list the titles Alan Smithee is known for:

select
title.primary_title,
title.start_year

from
name_to_known_for_title
join name on

name.id = name_to_known_for_title.name_id
join title on

title.id = name_to_known_for_title.title_id
where

name.primary_name = 'Alan Smithee'

To list all movies and actors that played a character named “James Bond”:

8 Chapter 3. Usage

https://docs.sqlalchemy.org/en/13/core/engines.html
https://docs.sqlalchemy.org/en/13/core/engines.html
https://docs.sqlalchemy.org/en/13/dialects/index.html
https://www.postgresql.org/

pimdb, Release 0.2.3

Listing 1: Movies with a character named “James Bond” and the respec-
tive actor

select
title.primary_title as "Title",
title.start_year as "Year",
name.primary_name as "Actor",
"character".name as "Character"

from
"character"
join participation_to_character on

participation_to_character.character_id = "character".id
join participation on

participation.id = participation_to_character.participation_id
join name on

name.id = participation.name_id
join title on

title.id = participation.title_id
join title_type on

title_type.id = title.title_type_id
where

"character".name = 'James Bond'
and title_type.name = 'movie'

order by
title.start_year,
name.primary_name,
title.primary_title

3.7 Reference

To get an overview of general command line options and available commands run:

pimdb --help

To learn the available command line options for a specific command run for example:

pimdb transfer --help

3.7. Reference 9

pimdb, Release 0.2.3

10 Chapter 3. Usage

CHAPTER

FOUR

DATA MODEL

The tables created by pimdb are part of two different data models:

1. The dataset model as created by pimdb transfer.

2. The normalized model as created by pimdb build and derived from the tables of the dataset model.

The main difference is that the tables dataset model are basically a copy of the flat datesets, while the normalized model
has normalized relations and several data quality and naming issues cleaned up.

This chapter describes both kinds of tables and gives examples on how to query them.

4.1 Dataset tables

The data are transferred “as is” except that duplicates are skipped. Most of the time the datasets do not include
duplicates, but every once in a while they do, especially names.basic.tsv.gz.

You can find a short description of the datasets and the available fields at the page about the IMDb datasets.

Dataset tables have their names in PascalCase, for example TitleBasics while the field names preserve the original
camelCase, for example runtimeMinutes.

Typically queries will start from either NameBasics or TitleBasics and from there join into other tables. Data about
names are connected with the field nconst while data about titles use tconst. The only exception is TitleAkas
which has its tconst stored in titleId.

The tables have no foreign key relations to other tables for the following reasons:

1. At the time of this writing, the datasets include minor inconsistencies that would break the data import due to
unresolvable foreigen key relations.

2. Without foreign key relations is easily possible to pimdb transfer multiple tables in parallel.

Here is an example query that lists all the titles directed by Alan Smithee:

Listing 1: Example query: titles directed by Alan Smithee

select
TitleBasics.primaryTitle,
TitleBasics.startYear

from
TitleBasics
join TitlePrincipals on

TitlePrincipals.tconst = TitleBasics.tconst
join NameBasics on

(continues on next page)

11

https://www.imdb.com/interfaces/

pimdb, Release 0.2.3

(continued from previous page)

NameBasics.nconst = TitlePrincipals.nconst
where

NameBasics.primaryName = 'Alan Smithee'
and TitlePrincipals.category = 'director'

The tables have very few indexes, typically only the key fields nconst and tconst are indexed. So SQL joins on these
fields should be reasonably fast while for example SQL where conditions on name fields are pretty slow.

You can add your own indexes at any time but be aware that too many indexes might slow down future runs of pimdb
transfer. Also they take more space. And finally, if you use the command line option --drop, they are removed and
you will have to create them again.

4.2 Normalized tables

While the dataset table are already sufficient for many simple queries, they have several issues that normalized tables
created with pimdb build solve:

1. 1:N relations are stored in relation tables instead of comma separated varchar fields. For exaple, compare
NameBasics.knownForTitles with name_to_known_for_title.

2. Inconsistent or non-existent references are removed and replaced by clean foreign key relationships.

3. SQL joins can be performed more efficiently using integer id fields instead of the varchar fields nconst and
tconst. If needed, the latter are still available from name.nconst and title.tconst.

4. Ratings from TitleRatings (dataset: title.ratings) have been merged with TitleBasics into title.
average_rating and title.rating_count. For titles that have no rating, these values are both 0.

Normalized tables are named using snake_case, for example title_alias, and so are fields in these tables, for example
primary_title. This makes it easy to know whether a table is a dataset or normalized.

Let’s take a look at these tables and how they are related to each other.

First, there is name which contains information about persons that one way or another contributed to a title:

Fig. 1: The essential data model for table name

Next, there is title which is somewhat similar to name but contains details about titles. It also has relation to
title_type, which is a key table containing all available title types, for example: “movie”, “tvEpisode” and so on.
Apparently there are only a few different such types, so this table is pretty small. Similarly there is a table genre with
names like “Action”, “Sci-Fi”, “Documentary” and so on. Because a title can have multiple genres, they are connected
in a relation table title_to_genre in order to represent this M:N relation.

12 Chapter 4. Data model

pimdb, Release 0.2.3

Fig. 2: The essential data model for table title

As example here is a query to list the genres of a certain title:

Listing 2: Example query: genres of “Wyrmwood: Road if the Dead”

select
title.tconst,
title.primary_title,
genre.name as "genre.name"

from
title
join title_to_genre on

title_to_genre.title_id = title.id
join genre on

genre.id = title_to_genre.genre_id
where

title.tconst = 'tt2535470' -- "Wyrmwood: Road of the Dead"
order by

title.tconst,
title_to_genre.ordering

The output would be:

tconst primary_title genre.name
tt2535470 Wyrmwood: Road of the Dead Action
tt2535470 Wyrmwood: Road of the Dead Comedy
tt2535470 Wyrmwood: Road of the Dead Horror

4.2. Normalized tables 13

pimdb, Release 0.2.3

Similarly, a title be known under different names, for example depending on the country or media released on. A
title_alias is related to exactly one title and can have multiple aliases. They are connect with the relation table
title_to_alias and have a certain title_alias_type like “dvd”, “tv” or “festival”.

Fig. 3: The essential data model for table title_alias

And finally names and titles can be related to each other. A simple variant are the titles a person is known for:

As example, here is a query that lists the titles Alan Smithee is known for:

Listing 3: Example query: titles Alan Smithee is known for

select
title.primary_title,
title.start_year

from
name_to_known_for_title
join name on

name.id = name_to_known_for_title.name_id
join title on

title.id = name_to_known_for_title.title_id
where

name.primary_name = 'Alan Smithee'

More details on how a person contributed in the makeing of a title are avaiable via the participation table,
which connects names and titles with a profession like “actress” or “director”. For professions like “actor”
and “actress” there also is information on which character(s) they played in a certain title using the relation table
participation_to_character and the key table character. Unlike most other key table that have only a couple
of entries, character has about two million.

Note that not everyone actually played a character as a title typically has many supporting roles. Depending on the
goals of your query you might have to use a left join for participation_to_character.

14 Chapter 4. Data model

pimdb, Release 0.2.3

Fig. 4: The data model for known titles of a name.

4.2. Normalized tables 15

pimdb, Release 0.2.3

Fig. 5: The data model about who participated in which title and possibly played what character.

16 Chapter 4. Data model

pimdb, Release 0.2.3

Listing 4: Example query: movies with a character named “James Bond”
and the respective actor

select
title.primary_title as "Title",
title.start_year as "Year",
name.primary_name as "Actor",
"character".name as "Character"

from
"character"
join participation_to_character on

participation_to_character.character_id = "character".id
join participation on

participation.id = participation_to_character.participation_id
join name on

name.id = participation.name_id
join title on

title.id = participation.title_id
join title_type on

title_type.id = title.title_type_id
where

"character".name = 'James Bond'
and title_type.name = 'movie'

order by
title.start_year,
name.primary_name,
title.primary_title

4.2. Normalized tables 17

pimdb, Release 0.2.3

18 Chapter 4. Data model

CHAPTER

FIVE

CONTRIBUTING

5.1 Project setup

In case you want to play with the source code or contribute changes proceed as follows:

1. Check out the project from GitHub:

$ git clone https://github.com/roskakori/pimdb.git
$ cd pimdb

2. Create and activate a virtual environment:

$ python -m venv venv
$. venv/bin/activate

3. Install the required packages:

$ pip install --upgrade pip
$ pip install -r requirements.txt

4. Install the pre-commit hook:

$ pre-commit install

5.2 Testing

To run the test suite:

$ pytest

To build and browse the coverage report in HTML format:

$ pytest --cov-report=html
$ open htmlcov/index.html # macOS only

PIMDB_TEST_DATABASE

By default, all database related tests run on SQLite. Some tests can run on different databases in order to test that
everything works across a wide range. To use a specific database, set the respective engine in the environment variable
PIMDB_TEST_DATABASE. For example:

19

pimdb, Release 0.2.3

export PIMDB_TEST_DATABASE="postgresql+psycopg2://postgres@localhost:5439/pimdb_test"

PIMDB_TEST_FULL_DATABASE

Some tests require a database built with actual full datasets instead of just small test datasets. Use the environment
variable PIMDB_TEST_FULL_DATABASE to set it. For example:

export PIMDB_FULL_TEST_DATABASE="sqlite:////Users/me/Development/pimdb/pimdb.db"

5.3 Test run with PostgreSQL

While the test suite uses SQLite, you can test run pimdb on a PostgreSQL database in a docker container:

1. Install Docker Desktop

2. Run the postgres container in port 5439 (possibly using sudo):

docker-compose --file tests/docker-compose.yml up postgres

3. Create the database (possibly using sudo):

docker exec -it pimdb_postgres psql --username postgres --command "create database␣
→˓pimdb"

If you want a separate database for the unit tests:

docker exec -it pimdb_postgres psql –username postgres –command “create database pimdb_test”

4. Run pimdb:

pimdb transfer --dataset-folder tests/data --database postgresql+psycopg2://
→˓postgres@localhost:5439/pimdb all

5.4 Documentation

To build the documentation in HTML format:

$ make -C docs html
$ open docs/_build/html/index.html # macOS only

5.5 Coding guidelines

The code throughout uses a natural naming schema avoiding abbreviations, even for local variables and parameters.

Many coding guidelines are automatically enforced (and some even fixed automatically) by the pre-commit hook. If
you want to check and clean up the code without performing a commit, run:

$ pre-commit run --all-files

In particular, this applies black, flake8 and isort.

20 Chapter 5. Contributing

https://www.docker.com/get-started
https://black.readthedocs.io/en/stable/
https://flake8.pycqa.org/
https://pypi.org/project/isort/

CHAPTER

SIX

CHANGES

Version 0.2.3, 2020-05-02

• Fixed ForeignKeyViolation when building normalized temporary table characters_to_character.

• Fixed ValueError when no command was specified for the pimdb command line client.

Version 0.2.2, 2020-04-26

• Fixed AssertionError when command line option --bulk was less than 1.

• Added NAME normalized as option for pimdb transfer to transfer only the datasets needed by pimdb
build.

• Removed redundant normalized tables title_to(director|writer). Use relation praticipation.
profession_id to limit query results to certain professions.

• Added documentation chapter explaining the Data model including example SQL queries and overview ER
diagrams.

• Added automatic removal of temporary tables only needed to build the normalized tables.

Version 0.2.1, 2020-04-18

• Improved performance of command build for PostgreSQL by changing bulk insert to copy from.

Version 0.2.0, 2020-04-16

• Fixed command build for PostgreSQL (issue #25).:

– Index names now have at most 63 characters under PostgreSQL. Proper limits should also be in place for
MS SQL and Oracle but have yet to be tested. SQLite always worked because it has a very large limit.

– The PostgreSQL docker container for the test run now has more shared memory in order to allow “insert
. . . from select . . . ” with millions of rows. Performance still has a lot of room for improvement.

• Added TV episodes (tables TitleEpisode resp. episode).

• Cleaned up logging for transfer and build to consistently log the time and rows per second for each table.

Version 0.1.2, 2020-04-14

• Fixed remaining “value to long” errors (issue #14).

• Fixed TypeError when command line option –bulk was specified.

• Added instructions on how to test run pimdb on a PostgreSQL docker container, see Test run with PostgreSQL.

Version 0.1.1, 2020-04-13

• Fixed “value to long” for NameBasics.knowForTitles (issue #13).

• Added option to omit “sqlite:///” prefix from --database and specify only the path to the database file.

21

https://github.com/roskakori/pimdb/issues/25
https://github.com/roskakori/pimdb/issues/14
https://github.com/roskakori/pimdb/issues/13

pimdb, Release 0.2.3

• Moved documentation to ReadTheDocs.

• Improved performance of SQL inserts by using bulk inserts consistently and changing loops to SQL insert
... from select ... (where possible).

Version 0.1.0, 2020-04-11

• Initial public release.

22 Chapter 6. Changes

https://pimdb.readthedocs.io/

CHAPTER

SEVEN

INDICES AND TABLES

• genindex

23

pimdb, Release 0.2.3

24 Chapter 7. Indices and tables

INDEX

Symbols
--database

pimdb command line option, 8

E
environment variable

PIMDB_TEST_DATABASE, 19
PIMDB_TEST_FULL_DATABASE, 20

P
pimdb command line option

--database, 8
PIMDB_TEST_DATABASE, 19
PIMDB_TEST_FULL_DATABASE, 20

25

	License
	Installation
	Usage
	Downloading datasets
	Transferring datasets into tables
	Querying tables
	Databases other than SQLite
	Building normalized tables
	Querying normalized tables
	Reference

	Data model
	Dataset tables
	Normalized tables

	Contributing
	Project setup
	Testing
	Test run with PostgreSQL
	Documentation
	Coding guidelines

	Changes
	Indices and tables
	Index

